Integration of contractile forces during tissue invagination
نویسندگان
چکیده
Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin meshwork contractions and a ratchet-like stabilization of cell shape drive apical constriction. Here, we investigate how contractile forces are integrated across the tissue. Reducing adherens junction (AJ) levels or ablating actomyosin meshworks causes tissue-wide epithelial tears, which release tension that is predominantly oriented along the anterior-posterior (a-p) embryonic axis. Epithelial tears allow cells normally elongated along the a-p axis to constrict isotropically, which suggests that apical constriction generates anisotropic epithelial tension that feeds back to control cell shape. Epithelial tension requires the transcription factor Twist, which stabilizes apical myosin II, promoting the formation of a supracellular actomyosin meshwork in which radial actomyosin fibers are joined end-to-end at spot AJs. Thus, pulsed actomyosin contractions require a supracellular, tensile meshwork to transmit cellular forces to the tissue level during morphogenesis.
منابع مشابه
Endocytosis and streaming of highly gelated cytoplasm alongside rows of arm-bearing microtubules in the ciliate Nassula.
The microtubular cytopharyngeal basket acts as a jet engine when Nassula ingests filaments of blue-green algae. Prolonged and highly directed cytoplasmic streaming forms the main mechanical basis for propulsion of algal filaments through the basket. Cytoplasm surrounding such filaments streams at the same rate as that at which filaments travel through the basket's interior. This cytoplasm appea...
متن کاملIntracellular signalling and intercellular coupling coordinate heterogeneous contractile events to facilitate tissue folding
Cellular forces generated in the apical domain of epithelial cells reshape tissues. Recent studies highlighted an important role for dynamic actomyosin contractions, called pulses, that change cell and tissue shape. Net cell shape change depends on whether cell shape is stabilized, or ratcheted, between pulses. Whether there are different classes of contractile pulses in wild-type embryos and h...
متن کاملDynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis
Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood...
متن کاملForce generation, transmission, and integration during cell and tissue morphogenesis.
Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies...
متن کاملAn Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis
Morphogenesis of multicellular organisms is driven by localized cell shape changes. How, and to what extent, changes in behavior in single cells or groups of cells influence neighboring cells and large-scale tissue remodeling remains an open question. Indeed, our understanding of multicellular dynamics is limited by the lack of methods allowing the modulation of cell behavior with high spatiote...
متن کامل